Part Number Hot Search : 
20IMX15 ADM1022 D1391 DB106 VMPBNCF XFGIB100 TLHG46 G310VS
Product Description
Full Text Search
 

To Download MC14060BDG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2014 august, 2014 ? rev. 10 1 publication order number: mc14060b/d mc14060b 14-bit binary counter and oscillator the mc14060b is a 14?stage binary ripple counter with an on?chip oscillator buffer. the oscillator configuration allows design of either rc or crystal oscillator circuits. also included on the chip is a reset function which places all outputs into the zero state and disables the oscillator. a negative transition on clock will advance the counter to the next state. schmitt trigger action on the input line permits very slow input rise and fall times. applications include time delay circuits, counter controls, and frequency dividing circuits. this device contains protection circ uitry to guard against damage due to high static voltages or electric fields. however, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high?impedance circuit. for proper operation, v in and v out should be constrained to the range v ss (v in or v out ) v dd . unused inputs must always be tied to an appropriate logic voltage level (e.g., either v ss or v dd ). unused outputs must be left open. features ? fully static operation ? diode protection on all inputs ? supply voltage range = 3.0 v to 18 v ? capable of driving two low?power ttl loads or one low?power schottky ttl load over the rated temperature range ? buffered outputs available from stages 4 through 10 and 12 through 14 ? common reset line ? pin?for?pin replacement for cd4060b ? nlv prefix for automotive and other applications requiring unique site and control change requirements; aec?q100 qualified and ppap capable ? these devices are pb?free and are rohs compliant maximum ratings (voltages referenced to v ss ) symbol parameter value unit v dd dc supply voltage range ?0.5 to +18.0 v v in , v out input or output voltage range (dc or transient) ?0.5 to v dd +0.5 v i in , i out input or output current (dc or transient) per pin 10 ma p d power dissipation, per package (note 1) 500 mw t a ambient temperature range ?55 to +125 c t stg storage temperature range ?65 to +150 c t l lead temperature (8 second soldering) 260 c stresses exceeding those listed in the maximum ratings table may damage the device. if any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. temperature derating: ?d/dw? packages: ?7.0 mw/ c from 65 c to 125 c. http://onsemi.com see detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. ordering information marking diagrams soic?16 tssop?16 14060bg awlyww soeiaj?16 mc14060b alywg 1 16 1 16 14 060b alyw   1 16 a = assembly location wl, l = wafer lot yy, y = year ww, w = work week g or  = pb?free package (note: microdot may be in either location) soic?16 d suffix case 751b tssop?16 dt suffix case 948f soeiaj?16 f suffix case 966 pin assignment 13 14 15 16 9 10 11 12 5 4 3 2 1 8 7 6 reset q9 q8 q10 v dd out 2 out 1 clock q6 q13 q12 v ss q4 q7 q5 q14
mc14060b http://onsemi.com 2 table 1. truth table clock reset output state h l l h no change advance to next state all outputs are low x = don?t care figure 1. logic diagram out 2 out 1 clock reset 12 11 10 9 q4 q5 q12 q13 q14 5 7123 cq r cq cq r cq cq r cq cq r cq cq r cq cq r cq q6 = pin 4 q7 = pin 6 q8 = pin 14 q9 = pin 13 q10 = pin 15 v dd = pin 16 v ss = pin 8 ordering information device package shipping ? MC14060BDG soic?16 (pb?free) 48 units / rail nlv14060bdg* soic?16 (pb?free) 48 units / rail mc14060bdr2g soic?16 (pb?free) 2500 / tape & reel nlv14060bdr2g* soic?16 (pb?free) 2500 / tape & reel mc14060bdtr2g tssop?16 (pb?free) 2500 / tape & reel nlv14060bdtr2g* tssop?16 (pb?free) 2500 / tape & reel mc14060bfelg soeiaj?16 (pb?free) 2000 / tape & reel ?for information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging specifications brochure, brd8011/d. *nlv prefix for automotive and other applications requiring unique site and control change requirements; aec?q100 qualified and ppap capable.
mc14060b http://onsemi.com 3 electrical characteristics (voltages referenced to v ss ) symbo l characteristic v dd vdc ?55 c 25 c 125 c unit min max min typ (note 2) max min max v ol output voltage ?0? level v in = v dd or 0 5.0 10 15 ? ? ? 0.05 0.05 0.05 ? ? ? 0 0 0 0.05 0.05 0.05 ? ? ? 0.05 0.05 0.05 v v oh v in = 0 or v dd ?1? level 5.0 10 15 4.95 9.95 14.95 ? ? ? 4.95 9.95 14.95 5.0 10 15 ? ? ? 4.95 9.95 14.95 ? ? ? v v il input voltage ?0? leve l (v o = 4.5 or 0.5 v) (v o = 9.0 or 1.0 v) (v o = 13.5 or 1.5 v) (v o = 0.5 or 4.5 v) ?1? leve l (v o = 1.0 or 9.0 v) (v o = 1.5 or 13.5 v) 5.0 10 15 ? ? ? 1.5 3.0 4.0 ? ? ? 2.25 4.50 6.75 1.5 3.0 4.0 ? ? ? 1.5 3.0 4.0 v v ih 5.0 10 15 3.5 7.0 11.0 ? ? ? 3.5 7.0 11.0 2.75 5.50 8.25 ? ? ? 3.5 7.0 11.0 ? ? ? v v il input voltage ?0? leve l (v o = 4.5 vdc) (for input 11 (v o = 9.0 vdc) and output 10 ) (v o = 13.5 vdc) (v o = 0.5 vdc) ?1? leve l (v o = 1.0 vdc) (v o = 1.5 vdc) 5.0 10 15 ? ? ? 1.0 2.0 2.5 ? ? ? 2.25 4.50 6.75 1.0 2.0 2.5 ? ? ? 1.0 2.0 2.5 vdc v ih 5.0 10 15 4.0 8.0 12.5 ? ? ? 4.0 8.0 12.5 2.75 5.50 8.25 ? ? ? 4.0 8.0 12.5 ? ? ? vdc i oh output drive current (v oh = 2.5 v) (except source (v oh = 4.6 v) pins 9 and 10 ) (v oh = 9.5 v) (v oh = 13.5 v) (v ol = 0.4 v) sin k (v ol = 0.5 v) (v ol = 1.5 v) 5.0 5.0 10 15 ?3.0 ?0.64 ?1.6 ? 4.2 ? ? ? ? ?2.4 ?0.51 ?1.3 ?3.4 ?4.2 ?0.88 ?2.25 ?8.8 ? ? ? ? ? 1.7 ? 0.36 ? 0.9 ? 2.4 ? ? ? ? ma i ol 5.0 10 15 0.64 1.6 4.2 ? ? ? 0.51 1.3 3.4 0.88 2.25 8.8 ? ? ? 0.36 0.9 2.4 ? ? ? ma i in input current 15 ? 0.1 ? 0.00001 0.1 ? 1.0  a c in input capacitance (v in = 0) ? ? ? ? 5.0 7.5 ? ? pf i dd quiescent current (per package) 5.0 10 15 ? ? ? 5.0 10 20 ? ? ? 0.005 0.010 0.015 5.0 10 20 ? ? ? 150 300 600  a i t total supply current (notes 3, 4) (dynamic plus quiescent, per package) (c l = 50 pf on all outputs, all buffers switching) 5.0 10 15 i t = (0.25  a/khz) f + i dd i t = (0.54  a/khz) f + i dd i t = (0.85  a/khz) f + i dd  a product parametric performance is indicated in the electrical characteristics for the listed test conditions, unless otherwise noted. product performance may not be indicated by the electrical characteristics if operated under different conditions. 2. data labelled ?typ? is not to be used for design purposes but is intended as an indication of the ic?s potential performance. 3. the formulas given are for the typical characteristics only at 25 c. 4. to calculate total supply current at loads other than 50 pf: i t (c l ) = i t (50 pf) + (c l ? 50) vfk where: i t is in  a (per package), c l in pf, v = (v dd ? v ss ) in volts, f in khz is input frequency, and k = 0.002.
mc14060b http://onsemi.com 4 switching characteristics (c l = 50 pf, t a = 25 c) symbol characteristic v dd vdc min typ (note 5) max unit t tlh output rise time (counter outputs) 5.0 10 15 ? ? ? 40 25 20 200 100 80 ns t thl output fall time (counter outputs) 5.0 10 15 ? ? ? 50 30 20 200 100 80 ns t plh t phl propagation delay time clock to q4 clock to q14 5.0 10 15 ? ? ? 415 175 125 740 300 200 ns 5.0 10 15 ? ? ? 1.5 0.7 0.4 2.7 1.3 1.0  s t wh clock pulse width 5.0 10 15 100 40 30 65 30 20 ? ? ? ns f  clock pulse frequency 5.0 10 15 ? ? ? 5 14 17 3.5 8 12 mhz t tlh t thl clock rise and fall time 5.0 10 15 no limit ns t w reset pulse width 5.0 10 15 120 60 40 40 15 10 ? ? ? ns t phl propagation delay time reset to on 5.0 10 15 ? ? ? 170 80 60 350 160 100 ns 5. data labelled ?typ? is not to be used for design purposes but is intended as an indication of the ic?s potential performance. figure 1. power dissipation test circuit and waveform figure 2. switching time test circuit and waveforms pulse generator i d v dd 500  f 0.01  f clock nc nc q4 q5 qn r out1 out2 v ss c l c l c l 20 ns 20 ns clock 90% 50% 10% 50% duty cycle v dd v ss pulse generator v dd clock nc nc q4 q5 qn r out1 out2 v ss c l c l c l 20 ns 20 ns clock q t tlh t thl t plh t phl t wh 90% 50% 10% 90% 50% 10%
mc14060b http://onsemi.com 5 figure 3. oscillator circuit using rc configuration 11 reset r s c tc r tc 10out 1 9out 2 f  1 2.3 r tc c tc if 1 khz f 100 khz and 2r tc < r s < 10r tc (f in hz, r in ohms, c in farads) the formula may vary for other frequencies. recommended maximum value for the resistors in 1 m  . typical rc oscillator characteristics figure 4. rc oscillator stability figure 5. rc oscillator frequency as a function of r tc and c - 8.0 -12 -16 - 4.0 0 4.0 8.0 125 100 75 50 25 0 -25 -55 t a , ambient temperature ( c) frequency deviation (%) v dd = 15 v 1.0 v 5.0 v r tc = 56 k  c = 1000 pf r s =0, f=10.15khz @ v dd =10, t a =25 c r s =120 k  , f=7.8khz @ v dd =10v, t a =25 c f, oscillator frequency (khz) 100 50 20 10 5 2 1 0.5 0.2 0.1 1.0 k 10 k 100 k 1.0 m r tc , resistance (ohms) 0.0001 0.001 0.01 0.1 c, capacitance (  f) v dd = 10 v f as a function of r tc (c = 1000 pf) (r s 2r tc ) f as a function of c (r tc = 56 k  ) (r s = 120 k) figure 6. typical crystal oscillator circuit clock 11 reset 9out 2 10out 1 18m r o c s c t ???????????????? ???????????????? ???????????????? table 2. typical data for crystal oscillator circuit ?????????? ?????????? ?????????? ???? ???? ???? ??? ??? ??? ?? ?? ?? ?????????? ?????????? ?????????? crystal characteristics resonant frequency equivalent resistance, r s ???? ???? ???? ??? ??? ??? ?? ?? ??  ?????????? ?????????? ?????????? ?????????? external resistor/capacitor values r o c t c s ???? ???? ???? ???? ??? ??? ??? ??? ?? ?? ?? ??  pf pf ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? c) v dd change from 5.0 v to 10 v v dd change from 10 v to 15 v frequency change as a function of temperature (v dd = 10 v) t a change from ? 55 c to +25 c complete oscillator (note 6) t a change from + 25 c to + 125 c complete oscillator (note 6) ???? ???? ???? ???? ???? ???? ???? ???? ??? ??? ??? ??? ??? ??? ??? ??? ?? ?? ?? ?? ?? ?? ?? ?? ???????????????? ???????????????? ????????????????
mc14060b http://onsemi.com 6 package dimensions soic?16 d suffix case 751b?05 issue k notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. 3. dimensions a and b do not include mold protrusion. 4. maximum mold protrusion 0.15 (0.006) per side. 5. dimension d does not include dambar protrusion. allowable dambar protrusion shall be 0.127 (0.005) total in excess of the d dimension at maximum material condition. 18 16 9 seating plane f j m r x 45  g 8 pl p ?b? ?a? m 0.25 (0.010) b s ?t? d k c 16 pl s b m 0.25 (0.010) a s t dim min max min max inches millimeters a 9.80 10.00 0.386 0.393 b 3.80 4.00 0.150 0.157 c 1.35 1.75 0.054 0.068 d 0.35 0.49 0.014 0.019 f 0.40 1.25 0.016 0.049 g 1.27 bsc 0.050 bsc j 0.19 0.25 0.008 0.009 k 0.10 0.25 0.004 0.009 m 0 7 0 7 p 5.80 6.20 0.229 0.244 r 0.25 0.50 0.010 0.019  6.40 16x 0.58 16x 1.12 1.27 dimensions: millimeters 1 pitch 16 89 8x *for additional information on our pb?free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint*
mc14060b http://onsemi.com 7 package dimensions tssop?16 dt suffix case 948f issue b 7.06 16x 0.36 16x 1.26 0.65 dimensions: millimeters 1 pitch ??? ??? ??? dim min max min max inches millimeters a 4.90 5.10 0.193 0.200 b 4.30 4.50 0.169 0.177 c ??? 1.20 ??? 0.047 d 0.05 0.15 0.002 0.006 f 0.50 0.75 0.020 0.030 g 0.65 bsc 0.026 bsc h 0.18 0.28 0.007 0.011 j 0.09 0.20 0.004 0.008 j1 0.09 0.16 0.004 0.006 k 0.19 0.30 0.007 0.012 k1 0.19 0.25 0.007 0.010 l 6.40 bsc 0.252 bsc m 0 8 0 8 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. 3. dimension a does not include mold flash. protrusions or gate burrs. mold flash or gate burrs shall not exceed 0.15 (0.006) per side. 4. dimension b does not include interlead flash or protrusion. interlead flash or protrusion shall not exceed 0.25 (0.010) per side. 5. dimension k does not include dambar protrusion. allowable dambar protrusion shall be 0.08 (0.003) total in excess of the k dimension at maximum material condition. 6. terminal numbers are shown for reference only. 7. dimension a and b are to be determined at datum plane ?w?.  section n?n seating plane ident. pin 1 1 8 16 9 detail e j j1 b c d a k k1 h g s u 0.15 (0.006) t s u 0.15 (0.006) t s u m 0.10 (0.004) v s t 0.10 (0.004) ?t? ?v? ?w? 0.25 (0.010) 16x ref k n n *for additional information on our pb?free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint*
mc14060b http://onsemi.com 8 package dimensions soeiaj?16 f suffix case 966 issue a h e a 1 dim min max min max inches --- 2.05 --- 0.081 millimeters 0.05 0.20 0.002 0.008 0.35 0.50 0.014 0.020 0.10 0.20 0.007 0.011 9.90 10.50 0.390 0.413 5.10 5.45 0.201 0.215 1.27 bsc 0.050 bsc 7.40 8.20 0.291 0.323 0.50 0.85 0.020 0.033 1.10 1.50 0.043 0.059 0 0.70 0.90 0.028 0.035 --- 0.78 --- 0.031 a 1 h e q 1 l e  10  0  10  l e q 1  notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. 3. dimensions d and e do not include mold flash or protrusions and are measured at the parting line. mold flash or protrusions shall not exceed 0.15 (0.006) per side. 4. terminal numbers are shown for reference only. 5. the lead width dimension (b) does not include dambar protrusion. allowable dambar protrusion shall be 0.08 (0.003) total in excess of the lead width dimension at maximum material condition. dambar cannot be located on the lower radius or the foot. minimum space between protrusions and adjacent lead to be 0.46 ( 0.018). m l detail p view p c a b e m 0.13 (0.005) 0.10 (0.004) 1 16 9 8 d z e a b c d e e l m z on semiconductor and the are registered trademarks of semiconductor components industries, llc (scillc) or its subsidia ries in the united states and/or other countries. scillc owns the rights to a number of pa tents, trademarks, copyrights, trade secret s, and other intellectual property. a listin g of scillc?s product/patent coverage may be accessed at www.onsemi.com/site/pdf/patent?marking.pdf. scillc reserves the right to make changes without further notice to any product s herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any part icular purpose, nor does sci llc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ?typi cal? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating param eters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the right s of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgic al implant into the body, or other applications intended to s upport or sustain life, or for any other application in which the failure of the scillc product could create a situation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemni fy and hold scillc and its officers, em ployees, subsidiaries, affiliates, and dist ributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufac ture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. p ublication ordering information n. american technical support : 800?282?9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81?3?5817?1050 mc14060b/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 303?675?2175 or 800?344?3860 toll free usa/canada fax : 303?675?2176 or 800?344?3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your loc al sales representative


▲Up To Search▲   

 
Price & Availability of MC14060BDG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X